Abstract

micF RNA post-transcriptionally regulates Escherichia coli outer membrane protein F (OmpF), in response to temperature increase and other environmental stress conditions, by binding to ompF mRNA and destabilizing the message. Southern analyses show that the micF gene is present in related Gram-negative bacteria, including Salmonella typhimurium, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In addition, Northern analyses indicate that micF RNA and ompF mRNA levels are thermally regulated in several related species in a manner similar to the thermoregulation in Escherichia coli. DNA sequences from Salmonella typhi, Salmonella typhimurium, and Klebsiella pneumoniae show greater than 96% homology in the micF gene when compared to the Escherichia coli micF sequence. Upstream of micF, sequences show considerable variation, although several distinct regions are highly conserved. Some of these conserved regions correspond to known binding sites for the transcription factor OmpR and the DNA-binding protein integration host factor. In addition, E. coli micF RNA incubated with protein extracts from other species forms heterologous ribonucleoproteins (RNPs). The formation of these heterologous RNPs indicates both the presence of micF RNA-binding protein homologues in other species and a conservation of RNA-protein recognition sites. This work demonstrates that the micF RNA regulatory system is present in other Gram-negative bacterial species and that this system appears to be phylogenetically conserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call