Abstract

The kinetics of pyruvate kinase from Saccharomyces cerevisiae were studied at 25 degrees C and pH 6.2 as a function of the concentrations of ADP, phosphoenolpyruvate, Mg2+ and either NH4+ or K+. The data were analysed by the exponential model for four substrates, obtained by extension of the model described by Ainsworth, Kinderlerer & Gregory [(1983) Biochem. J. 209, 401-411]. On that basis, it was concluded that NH4+ binding is almost non-interactive but leads to the appearance of positive interaction in the velocity response to increase in its concentration because of positive interactions with phosphoenolpyruvate and Mg2+. The data obtained with K+ lead to the same conclusions and differ only in suggesting that NH4+ is bound more strongly to the enzyme than is K+. Both data sets are used as the basis for a discussion of the substrate interactions of pyruvate kinase and it appears therefrom that the heterotropic interactions accord with what is known of the events that take place at the active site during catalysis. The paper also reports a determination of the dissociation constants for the NH4+ complexes with ADP and phosphoenolpyruvate and an examination of the simultaneous activation of pyruvate kinase by K+ and NH4+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.