Abstract
SummaryType VI secretion systems (T6SSs) are widespread, tightly regulated, protein delivery apparatuses used by Gram‐negative bacteria to outcompete their neighbours. The pathogen, Vibrio parahaemolyticus, encodes two T6SSs. These T6SSs are differentially regulated by external conditions. T6SS1, an antibacterial system predominantly found in pathogenic isolates, requires warm marine‐like conditions and surface sensing for activation. The regulatory network that governs this activation is not well understood. In this work, we devised a screening methodology that allows us to easily monitor the outcome of bacterial competitions and thus to identify mutants that are defective in T6SS1‐mediated bacterial killing. The methodology, termed Bacterial Competition Fluorescence (BaCoF), relies on detection of a fluorescent signal as an indicator of the survival and growth of a T6SS‐sensitive, GFP‐expressing prey that has been co‐cultured with mutants derived from a T6SS+ attacker of interest. Using BaCoF, we screened a random transposon insertion mutant library and identified genes required for V. parahaemolyticus T6SS1 activation, among them TfoY and Tmk. We used epistasis experiments to determine the relationships between the newly identified components and other regulators that were previously described. Thus, we present here a detailed biological understanding of the T6SS1 regulatory network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.