Abstract

The cellular ability to react to environmental fluctuations depends on signaling networks that are controlled by the dynamic activities of kinases and phosphatases. Here, to gain insight into these stress-responsive phosphorylation networks, we generated a quantitative mass spectrometry-based atlas of early phosphoproteomic responses in Saccharomyces cerevisiae exposed to 101 environmental and chemical perturbations. We report phosphosites on 59% of the yeast proteome, with 18% of the proteome harboring a phosphosite that is regulated within 5 min of stress exposure. We identify shared and perturbation-specific stress response programs, uncover loss of phosphorylation as an integral early event, and dissect the interconnected regulatory landscape of kinase-substrate networks, as we exemplify with target of rapamycin signaling. We further reveal functional organization principles of the stress-responsive phosphoproteome based on phosphorylation site motifs, kinase activities, subcellular localizations, shared functions and pathway intersections. This information-rich map of 25,000 regulated phosphosites advances our understanding of signaling networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call