Abstract
A class of 24-32 nt PIWI-binding small noncoding RNAs (sncRNAs) termed as PIWI-interacting RNAs (piRNAs) have been identified in animal germline. Recent studies suggest that piRNA/PIWI pathway plays a critical role in both silencing of transposons and posttranscriptional regulation of mRNAs in animal germline. A study from Dr. Mofang Liu's lab in Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, reveals the physiological and pathological importance of PIWI metabolism (mouse PIWI as known as MIWI; human PIWI as HIWI) in mammalian spermatogenesis. Here, we summarize our current understanding of the piRNA/PIWI pathway in mammals (focusing on mouse and human), which is emerging as a fundamental component of spermatogenesis that ensures male fertility and genome integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.