Abstract

Pseudoalteromonas piscicida strain O-7 (formerly Alteromonas sp. strain O-7) is an efficient degrader of chitin in the marine environment. The chitinolytic system of the strain consists of many enzymes induced by N-acetylglucosamine (GlcNAc). This paper reports that CdsR, which is a response regulator of CdsS/CdsR two-component signal transduction system, is bound to near the promoter region of GlcNAc-induced aprIV gene. The CdsR protein as a response regulator was transphosphorylated by the CdsS protein as a sensor kinase. Furthermore, the transphosphorylation from CdsS to CdsR was promoted by chitin degradation products and a metabolite. The CdsR protein was also phosphorylated by acetyl phosphate which is an indicator of nutritive conditions of cells. Gel mobility shift assays demonstrated that phosphorylated CdsR (CdsR-P) was bound to not only near the promoter region of aprIV gene but also those of chiA, chiB, chiC, chiD and cbp1 genes which are induced in the presence of GlcNAc. Footprinting analysis demonstrated that CdsR-P was bound to the sequences around the transcriptional start sites of aprIV and chiD genes. These results indicate that CdsR is one of the common regulators of these genes involved in chitin degradation of the strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.