Abstract

Low phosphorus (LP) causes a dramatic change of root system architecture in plants, which is possibly mediated by signaling pathways of hormones. In order to understand the regulatory mechanisms of the root development under LP, we examined the potential role of phytohormones in response to LP using three barley genotypes, differing in LP tolerance, namely 2 Tibetan wild barley genotypes XZ99 (LP tolerant) and XZ100 (LP sensitive), and a cultivated barley ZD9 (LP moderately tolerant). The results showed that LP stress caused a number of changes in root development, with XZ99 having less primary root growth inhibition, more lateral root and root hair formation than the other two genotypes. Meanwhile, LP stress also resulted in the dramatic changes in plant hormone contents, with changed extent and pattern differing among the three genotypes. The relative expression of genes responsible for indole acetic acid (IAA) and ethylene synthesis in roots also showed a significant difference among genotypes in both control and LP conditions. It can be concluded that the root system of Tibetan wild barley XZ99 adapts to phosphorus deficiency by changing the signal transduction pathway mediated by auxin, ethylene and cytokinins. However, further studies are needed to elucidate the behaviors of the key genes involved in the hormone-related response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call