Abstract

The enzyme ornithine decarboxylase ( l-Ornithine carboxy-lyase, EC 4.1.1.17), has been partially purified from the livers of mice subjected to partial hepatectomy (6–8 h previously). Mouse liver ornithine decarboxylase requires pyridoxal phosphate, and dithiothreitol for maximal activity. The enzyme has a pH optimum of 7.3, it is inhibited in the presence of 0.3 M phosphate, glycine, Tricine and Tris. It shows no dependence on metal ions and is inhibited by high salt concentrations, particularly ammonium salts. The kinetics of the enzyme have been studied with putrescine (and analogs), spermidine and spermine, in the presence of both high and low levels of pyridoxal phosphate. High concentrations of pyridoxal phosphate inhibit the enzyme. The enzyme is also inhibited by low concentrations of putrescine (1 mM). As the concentration of putrescine increased to 10 mM, non-competitive inhibition was observed, this could be reversed by addition of higher levels of pyridoxal phosphate. Spermidine and spermine inhibit (noncompetitively) only at high concentrations (10 mM). Ornithine inhibits at high concentrations (2 mM). Spectral studies have shown that the observed kinetics of competitive inhibition at low concentrations of polyamine changing to noncompetitive inhibition at high polyamine concentrations are due to competition between enzyme and substrate (or inhibitor) for free (non-enzyme bound) pyridoxal phosphate. Noncompetitive inhibition arises through the formation of transient Schiff base complexes between amines and free pyridoxal phosphate. It also appears that the binding of substrate to the active site takes place through Schiff base formation with enzyme bound pyridoxal phosphate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.