Abstract
During growth the vertebrate eye achieves a close match between the power of its optics and its axial length with the result that images are focused on the retina without accommodative effort (emmetropia). The possibility that vision is required for the regulation of eye growth was studied experimentally in chicks made myopic or hyperopic by different visual manipulations. After discontinuing these visual manipulations, the eyes returned quickly to emmetropia mainly by adjusting the growth of their vitreous chambers; growth stopped in eyes recovering from myopia and continued in eyes recovering from hyperopia. Because both hyperopic and myopic eyes were already larger than normal controls, the difference in growth indicates that refractive error, rather than eye size per se, guides the eye toward emmetropia. Evidence is also presented for nonvisual shape-related control of eye growth, but this is slow-acting and cannot explain the emmetropization from induced refractive errors. Both the visually guided and shape-related mechanisms work even in eyes with the optic nerve cut, indicating that the two mechanisms are local to the eye. Although the optic-nerve-sectioned eye can sense the sign of a refractive error and initially adjust growth accordingly, it eventually overshoots emmetropia and reverses the sign of the initial refractive error. Whether this is due to loss of feedback from the central nervous system or retinal ganglion cells is unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.