Abstract

Using broadband optical imaging and Chandra X-ray data for a sample of 46 cluster central dominant galaxies (CDGs), we investigate the connection between star formation, the intracluster medium (ICM), and the central active galactic nucleus (AGN). We report the discovery of a remarkably sharp threshold for the onset of star formation that occurs when the central cooling time of the hot atmosphere falls below ~5 × 108 yr, or equivalently when the central entropy falls below ~30 keV cm2. In addition to this criterion, star formation in cooling flows also appears to require that the X-ray and galaxy centroids lie within ~20 kpc of each other and that the jet (cavity) power is smaller than the X-ray cooling luminosity. These three criteria, together with the high ratio of cooling time to AGN outburst (cavity) age across our sample, directly link the presence of star formation and AGN activity in CDGs to cooling instabilities in the intracluster plasma. Our results provide compelling evidence that AGN feedback into the hot ICM is largely responsible for regulating cooling and star formation in the cores of clusters, leading to the significant growth of supermassive black holes in CDGs at late times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.