Abstract

This paper develops and studies a feasible directions approach for the minimization of a continuous function over linear constraints in which the update directions belong to a predetermined finite set spanning the feasible set. These directions are recurrently investigated in a cyclic semi-random order, where the stepsize of the update is determined via univariate optimization. We establish that any accumulation point of this optimization procedure is a stationary point of the problem, meaning that the directional derivative in any feasible direction is nonnegative. To assess and establish a rate of convergence, we develop a new optimality measure that acts as a proxy for the stationarity condition, and substantiate its role by showing that it is coherent with first-order conditions in specific scenarios. Finally we prove that our method enjoys a sublinear rate of convergence of this optimality measure in expectation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.