Abstract
In this paper, we study the regularity of the free boundaries of the parabolic double obstacle problem for the heat operator and fully nonlinear operator. The result in this paper are generalizations of the theory for the elliptic problem in Lee et al. (Calc Var Partial Differ Equ 58(3):104, 2019) and Lee and Park (The regularity theory for the double obstacle problem for fully nonlinear operator, , 2018) to parabolic case and also the theory for the parabolic single obstacle problem in Caffarelli et al. (J Am Math Soc 17(4):827–869, 2004) to double obstacle case. New difficulties in the theory which are generated by the characteristic of parabolic PDEs and the existence of the upper obstacle are discussed in detail. Furthermore, the thickness assumptions to have the regularity of the free boundary are carefully considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.