Abstract
Let $u\in L^2(I; H^1(\Omega))$ with $\partial_t u\in L^2(I; H^1(\Omega)^*)$ be given. Then we show by means of a counter-example that the positive part $u^+$ of $u$ has less regularity, in particular it holds $\partial_t u^+ \notin L^1(I; H^1(\Omega)^*)$ in general. Nevertheless, $u^+$ satisfies an integration-by-parts formula, which can be used to prove non-negativity of weak solutions of parabolic equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Commentationes Mathematicae Universitatis Carolinae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.