Abstract

In this work, the Bingel-Hirsch addition of diethylbromomalonate to all non-equivalent bonds of Sc3N@D3h -C78 was studied using density functional theory calculations. The regioselectivities observed computationally allowed the proposal of a set of rules, the predictive aromaticity criteria (PAC), to identify the most reactive bonds of a given endohedral metallofullerene based on a simple evaluation of the cage structure. The predictions based on the PAC are fully confirmed by both the computational and experimental exploration of the Bingel-Hirsch reaction of Sc3N@D5h -C80, thus indicating that these rules are rather general and applicable to other isolated pentagon rule endohedral metallofullerenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call