Abstract

Global warming has caused severe regional water security risks, and from the theory of the hydrological cycle, the daily extreme temperature could also bring an impact on the streamflow volume, which could be even more important than the average temperature. Therefore, based on the level of the maximum or minimum temperature warming scenarios, a variety of meteorological datasets were selected to assess the asymmetric effect of increased daily extreme temperature on the streamflow from a multi-scale perspective by using the Variable Infiltration Capacity (VIC) model. Model simulations indicate that the streamflow experiences more significant changes in response to the maximum temperature than in response to the minimum temperature, and the relationships of streamflow with both the maximum and minimum temperatures show an upwards parabolic response function, but the response function varies with the type of warming. Additionally, the seasonal and monthly duration curves results show that the increases in both the maximum and minimum temperatures demonstrate a similar response that leads the proportion of the flood period streamflow to be increased (Tmin: 0.16–0.53%/°C; Tmax: 0.11–0.51%/°C). When the minimum temperature increases, the higher the original temperature in the region, the greater the proportion of the flood period streamflow increases. However, when the maximum temperature increases, the opposite effect occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.