Abstract

Skeletal muscle stem cells (MuSCs) are essential for muscle regeneration and maintenance. While MuSCs typically are quiescent and reside in an asymmetric niche between the basal lamina and myofiber membrane: to repair or maintain muscle, MuSCs activate, proliferate and differentiate to repair injured tissue, and self-renew to replenish MuSCs. Little is known about the timing of MuSC self-renewal during muscle regeneration and the cellular processes that direct MuSC self-renewal fate decisions. Using DNA-based lineage tracing, we find that during muscle regeneration most MuSCs self-renew from 5-7 days post-injury, following fusion of myogenic cells to regenerate myofibers. Single cell sequencing of the myogenic cells in regenerating muscle reveals that non-cell autonomous signaling networks regulate MuSC self-renewal allowing identification of asymmetrically distributed proteins in self-renewing MuSCs. Cell transplantation experiments verified that the regenerating environment signals MuSC self-renewal. Our results define the critical window for MuSC self-renewal emphasizing the temporal contribution of the regenerative muscle environment on MuSC fate, establishing a new paradigm for restoring the MuSC pool during muscle regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call