Abstract

In the classical experiment for the regelation of ice, a weight loaded wire sling is made to pass through a block of ice, but does not cut it apart because the plane of separation refreezes again. The usual explanation is only based on the anomaly of water, specifically the decrease of melting temperature with an increase in pressure; as stated in the Clausius-Clapeyron equation. It is shown here that heat conduction plays a dominant part in this experiment. The classical experiment was repeated with a variety of wires of different thermal conductivity and diameter, and various pressures were applied. From a simplified model for the heat conduction mechanism an equation for the prediction of the penetration rate could be obtained. The agreement of this theoretical equation with the experimental results is very good compared to other work. For metallic wires, the assumption of a linear temperature-distribution around the wire gives better agreement than sinusoidal. Perlon threads penetrate faster through the ice than theory predicts, thus indicating unseizable defects in the theory. An interlayer influence of the material-ice combination, dominating the penetration rate, could not be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.