Abstract

The problem of deducing one-dimensional theory from two-dimensional theory for a homogeneous isotropic beam is investigated. Based on elasticity theory, the refined theory of rectangular beams is derived by using Papkovich-Neuber solution and Lur’e method without ad hoc assumptions. It is shown that the displacements and stresses of the beam can be represented by the angle of rotation and the deflection of the neutral surface. Based on the refined beam theory, the exact equations for the beam without transverse surface loadings are derived and consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beam under transverse loadings are derived directly from the refined beam theory and are almost the same as the governing equations of Timoshenko beam theory. In two examples, it is shown that the new theory provides better results than Levinson’s beam theory when compared with those obtained from the linear theory of elasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.