Abstract
Over recent years, various semantics have been proposed for dealing with updates in the setting of logic programs. The availability of different semantics naturally raises the question of which are most adequate to model updates. A systematic approach to face this question is to identify general principles against which such semantics could be evaluated. In this paper we motivate and introduce a new such principle the refined extension principle. Such principle is complied with by the stable model semantics for (single) logic programs. It turns out that none of the existing semantics for logic program updates, even though generalisations of the stable model semantics, comply with this principle. For this reason, we define a refinement of the dynamic stable model semantics for Dynamic Logic Programs that complies with the principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.