Abstract

The main computational steps in algebraic soft-decoding, as well as Sudan-type list-decoding, of Reed–Solomon codes are bivariate polynomial interpolation and factorization. We introduce a computational technique, based upon re-encoding and coordinate transformation, that significantly reduces the complexity of the bivariate interpolation procedure. This re-encoding and coordinate transformation converts the original interpolation problem into another reduced interpolation problem, which is orders of magnitude smaller than the original one. A formal proof is presented to show that the two interpolation problems are indeed equivalent. An efficient factorization procedure that applies directly to the reduced interpolation problem is also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.