Abstract
The redundant target effect (RTE) is the well-known effect whereby a single target is detected faster when a second, redundant target is presented simultaneously. The RTE was shown in different experimental designs and applied in various clinical contexts. However, there are also studies showing non-effects or effects in the opposite direction. Our meta-analysis aims to investigate the replicability of the RTE. Herein, we focused on the clinical context within which the RTE has been applied most often and for which it gained particular prominence: The research on blindsight and other forms of residual vision in patients with damage to the neuronal visual system. The application of the RTE in clinical contexts assumes that whenever vision is present, an RTE will be found. Put differently, the RTE as a tool to uncover residual vision presumes that the RTE is a consistent feature of vision in the healthy population. We found a significant summary effect size of the RTE in healthy participants. The effect size depended on certain experimental features: task type, target configuration in the redundant condition, and how reaction times were computed in the single condition. A specific feature combination is typically used in blindsight research. Analyzing studies with this feature combination revealed a significant summary effect size in healthy participants predicting positive RTEs for future studies. A power-analysis revealed a required sample size of 14 participants to obtain an RTE with high reliability. However, the required sample size is rarely reached in blindsight research. Rather, blindsight research is mostly based on single-case studies. In summary, the RTE is a robust effect on group level but does not occur in every single individual. This means failure to obtain an RTE in a single patient should not be interpreted as evidence for the absence of residual vision in this patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.