Abstract

BackgroundAge-related macular degeneration (AMD) is a multifactorial chronic disease of the eye. Several candidate pathways have been hypothesized to play a role in AMD pathogenesis. Our work and those of others suggests inflammasome activity as a mechanism associated with retinal pigment epithelial (RPE) cell demise. X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptosis factor, has recently been shown to regulate inflammasome activity in non-ocular cells. The purpose of this study is to characterize XIAP’s regulatory role in RPE.MethodsProtein lysates of eye tissues from rats (vinpocetine- or aurin tricarboxylic acid complex-treated, ATAC, vs naïve) and mice (wild type vs Caspase-4−/−) were utilized to analyze XIAP protein levels. Immunohistochemistry was used to detect NLRP3 levels in the RPE layer. In vitro inflammasome activation on RPE cells was achieved with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) stimulation. Levels of XIAP mRNA and 18S RNA were quantified by RT-PCR. Cell culture supernatants were tested directly for secreted IL-1β by ELISA or concentrated for the detection of secreted IL-18 by western blot. Protein lysates from RPE in cell culture were collected for the measurement of cleaved caspase-1 p20, XIAP, and GAPDH. Data are presented as Mean ± SD. p < 0.05 is considered statistically significant.ResultsThe XIAP protein level was significantly increased when the inflammasome was inhibited at the “activation” step by ATAC, but not the “priming” step, in vivo. Concomitantly, NLRP3 immunoreactivity was lower in the RPE layer of animals fed with ATAC. In mice where caspase-1 cleavage was impaired by the genetic deficiency in caspase-4, the XIAP protein level increased in eye tissues. In RPE cell culture, Leu-Leu-OMe stimulation led to caspase-1 cleavage, cytokine secretion, and XIAP reduction, which can be abolished by Z-YVAD-FMK. When XIAP siRNA was given as a pre-treatment to RPE in vitro, Leu-Leu-OMe induced IL-1β/IL-18 secretion was enhanced, whereas overexpressing XIAP reduced IL-1β secretion under inflammasome activation, both compared to controls cells.ConclusionsTogether, these data suggest XIAP-mediated inhibition of inflammasome activity in RPE may provide insights into the biological consequences of inflammasome activation in RPE and reveals the caspase-1/XIAP/IL-1β/IL-18 axis as a target for broader applications in AMD biology and treatment design.

Highlights

  • Age-related macular degeneration (AMD) is a multifactorial chronic disease of the eye

  • When we tested the same set of protein samples for X-linked inhibitor of apoptosis protein (XIAP) by western blotting, there was no significant difference in XIAP protein abundance, suggesting that XIAP is not affected by the NF-κB “priming” signal (Fig. 1a)

  • We looked at the involvement of XIAP in the pathway associated with the “activation” signal

Read more

Summary

Introduction

Age-related macular degeneration (AMD) is a multifactorial chronic disease of the eye. Several candidate pathways have been hypothesized to play a role in AMD pathogenesis. Our work and those of others suggests inflammasome activity as a mechanism associated with retinal pigment epithelial (RPE) cell demise. Age-related macular degeneration (AMD) is a complex disease with various risk factors contributing to its pathogenesis. Despite the fact that the exact molecular basis underlying AMD is not yet fully understood, several candidate cellular and biochemical pathways associated with its development have been hypothesized. As a defense mechanism of the innate immune system, an intracellular, multi-protein complex, known as the inflammasome, possesses versatile activation capacities, and subsequent pro-inflammatory action. The inflammasome complex is not limited to immune cells; being the first tissues responding to injuries and pathogens, epithelial tissues have been shown to contain inflammasomes [1]. As to other inflammasome subtypes (e.g., NLRP1, NLRC4, AIM2), despite the difference in molecular composition, caspase-1 cleavage is required for their activation [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call