Abstract

The rate constants for reduction of methemerythrin from Phascolopsis gouldii and Themiste pyroides by hydrated electrons are 2.0 and 3.9 x 10(9) M(-1)s(-1), respectively, at pH 8.2, I = 0.03 M, and 25 degrees C. There is only a small increase in rate when the pH is lowered to 6.3 and a very small decrease when the ionic strength is raised to 0.1 M. Adding azide ion (to form the met-azide adduct) has little effect on the reactivity towards e-aq. For the monomer form, metmyohemerythrin from T. pyroides, the reaction rate constant is 4.5 x 10(9) M(-1)s(-1). Methemerythrin from T. pyroides reacts with CO2- with a rate constant 6.8 x 10(7) M(-1)s(-1). The reactivity sequence e-aq greater than CO2- greater than SO2- (from dithionite reduction) towards methemerythrin is the same as that observed with reduction of heme proteins but the rate constants are some 10 to 100 times smaller for the former. Only 10 to 20% of the e-aq or CO2- radicals generated effect reduction of the iron centers in methemerythrin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.