Abstract

With iron ore reduction processes using coal-ore pellets or mixtures, it is possible that volatiles can contribute to reduction. By simulating the constituents of the individual reducing species in the volatiles, the rates for H2 and CO were investigated in the temperature and reduction range of interest; hydrogen is the major reductant and was studied in detail. The kinetics of the reduction by H2 has been found to be a complex mechanism with, initially, nucleation and growth controlling the rate. There is a catalytic effect by the existing iron nuclei, followed by a mixed control of chemical kinetics and pore diffusion. This results in a topochemical reduction of these iron oxide particles. Up to 1173 K, reduction by H2 is considerably faster than by carbon in the pellet/mixture or by CO. It was also found that H2S, which is involved with the volatiles, does not affect the rate at the reduction range of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call