Abstract

The present study is aimed to reduce the environmental footprints resulted from chromite ore processing residues (COPR); a hazardous waste having Cr(VI). The solidification/stabilization of COPR through geopolymer coupled with green tea synthesized nano zerovalent iron (GT-NZVI) is an effective approach to deal with this challenge. Therefore, the blast furnace slag and metakaolin were used to prepare the composite based geopolymer and GT-NZVI particles were synthesized by oolong tea in current experiment. The GT-NZVI treated and untreated COPR was solidified in composite geopolymer. The efficiency of solidified products was evaluated through compressive strength and leaching analysis. The results depicted that varying sizes of GT-NZVI particles were successively synthesized which could be utilized for reduction of Cr(VI) existed in COPR. The solidified products having GT-NZVI treated COPR (GCM (GT-NZVI) and untreated COPR (GCM) had compressive strength of 33Mpa and 47 MPa, respectively up to 50% addition of COPR waste. The immobilization effect of GCM (GT-NZVI) samples were better than GCM samples. The leaching toxicity of Cr(VI) in both GCM (GT-NZVI) and GCM samples was far below than safe limits(<5 mg/L). In addition, the fourier transform infrared spectrometry, X-Ray diffraction, scanning electron microscope equipped with energy dispersive spectrometer analysis had verified that COPR was effectively solidified in composite based geopolymer by physical and chemical means.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call