Abstract

A previously unknown reduction of carbonyl compounds with dicyclopentylzinc is reported. Aldehydes react in mild conditions yielding corresponding primary alcohols and cyclopentene. Although cyclohexanone and acetophenone are inert to dicyclopentylzinc, a variety of heterocyclic ketones reacted readily, yielding reasonable to high yields of corresponding secondary alcohols. When the reaction was catalyzed with (–)-(1R,2S)-ephedrine, 3-acetylpyridine (10) resulted in a high yield of (S)-1-(pyridin-3-yl)ethanol (19) with >99% ee. 5-Acetyl-2-bromopyridine (11) also provided the corresponding optically active alcohol 20, albeit with a much lower optical yield. When 10% of 19 with 92% ee was used as an autocatalyst, 55% yield of the same compound was obtained, with 95% ee and 96% ee in two independent experiments. A three-stage reaction sequence starting from “no chirality” reaction yielded 19 with 6% ee. Thus, amplifying autocatalysis was detected in the reaction of ketone 10 with dicylopentylzinc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.