Abstract

For the memory intensive task of graph reduction, modern PCs are limited not by processor speed, but by the rate that data can travel between processor and memory. This limitation is known as the von Neumann bottleneck. We explore the effect of widening this bottleneck using a special-purpose graph reduction machine with wide, parallel memories. Our prototype machine – the Reduceron – is implemented using an FPGA, and is based on a simple template-instantiation evaluator. Running at only 91.5MHz on an FPGA, the Reduceron is faster than mature bytecode implementations of Haskell running on a 2.8GHz PC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.