Abstract

TrkA receptor activation is a pivotal process for neuronal cell differentiation and survival. However, its overactivation or removal of its ligand NGF tends to cause the cell death. Recently, we demonstrated that TrkA overexpression induces cell death via apoptosis. In this study we also show that the TrkA-mediated cell death is associated with autophagy. TrkA-induced cells revealed an increase of GFP-LC3 punctate formation, development of acidic vesicular organelles (AVO) and formation of autophagosomes, which were eventually blocked by the addition of some autophagy inhibitors such as 3-methyladenine, ammonium chloride or wortmannin. In addition, although expression of autophagy-related proteins such as LC3-II or Beclin-1 was subtly altered during the TrkA-mediated cell death, depletion of ATG5 or Beclin-1 substantially decreased cell death in TrkA-expressing cells. In particular, reactive oxygen species (ROS) were dramatically accumulated in TrkA-induced cells, and the high accumulation of ROS was released by treatment of autophagy inhibitors. Furthermore, addition of an antioxidant N-acetylcysteine promoted the survival of TrkA-expressing cells and suppressed AVO production in cells. We also showed that this ROS accumulation was closely associated with reduction of catalase expression. Taken together, TrkA overexpression causes ROS accumulation via reduced catalase expression, ultimately leading to autophagic cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.