Abstract

Short-hard gamma-ray bursts (SHBs) may arise from gravitational wave (GW) driven mergers of double neutron star (DNS) systems. DNSs may be "primordial" or can form dynamically by binary exchange interactions in globular clusters during core-collapse. For primordial binaries, the time delay between formation and merger is expected to be short, tau~0.1 Gyr, implying that the redshift distribution of merger events should follow that of star-formation. We point out here that for dynamically formed DNSs, the time delay between star-formation and merger is dominated by the cluster core-collapse time, rather than by the GW inspiral time, yielding delays comparable to the Hubble time. We derive the redshift distribution of merger events of dynamically formed DNSs, and find it to differ significantly from that typically expected for primordial binaries. The observed redshift distribution of SHBs favors dynamical formation, although a primordial origin cannot be ruled out due to possible detection biases. Future red-shift observations of SHBs may allow to determine whether they are dominated by primordial or dynamically formed DNSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.