Abstract

Pyridine nucleotide levels were measured in intact spinach chloroplasts. The NADPH/NADP ratio was close to unity in darkened chloroplasts. On illumination, chloroplast NADP levels decreased rapidly. The decrease was more prominent at low than at high light intensities. In the presence of bicarbonate, NADP subsequently increased to reach a steady-state level. The kinetics of the increase were related in general, but not in detail, to the lag phase of photosynthesis. In the steady state, chloroplast NADP was sometimes, particularly during photosynthesis at high light intensities, less reduced in the light than in the dark. In the dark-light transition, phosphoglycerate reduction is driven by increases in the ratios NADPH/NADP and ATP/ADP. When photosynthesis accelerates after the initial lag phase, the NADPH/NADP ratio decreases and a high ratio of phosphoglycerate to triose phosphate becomes an important factor in driving carbon reduction. Under photosynthetic flux conditions, the redox state of the chloroplast NADP system appeared to be governed largely by the chloroplast ratio of phosphoglycerate to dihydroxyacetone phosphate and by the phosphorylation potential [ATP]/[ADP] [P i]. The inhibitor of cyclic electron transport, antimycin A, increased reduction of the chloroplast NADP system. Even when reduction was almost complete in the presence of 5 μM antimycin A, photosynthesis was still significant at low light intensities. Electrons appeared to be effectively distributed between the cyclic electron-transport pathway and the noncyclic route to NADP at NADPH/NADP ratios as low as about 1. When bicarbonate was absent, the NADP system remained largely reduced in the light. The energy-transfer inhibitor, Dio-9, and uncouplers and agents which interfered with pH regulation of the Calvin cycle increased reduction of the NADP system while decreasing photosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.