Abstract

Platinum (Pt) compounds entered the clinic as anticancer agents when cisplatin was approved in 1978. More than 40 years later, even in the era of precision medicine and immunotherapy, Pt drugs remain among the most widely used anticancer drugs. As Pt drugs mainly target DNA, it is not surprising that recent insights into alterations of DNA repair mechanisms provide a useful explanation for their success. Many cancers have defective DNA repair, a feature that also sheds new light on the mechanisms of secondary drug resistance, such as the restoration of DNA repair pathways. In addition, genome-wide functional screening approaches have revealed interesting insights into Pt drug uptake. About half of cisplatin and carboplatin but not oxaliplatin may enter cells through the widely expressed volume-regulated anion channel (VRAC). The analysis of this heteromeric channel in tumour biopsies may therefore be a useful biomarker to stratify patients for initial Pt treatments. Moreover, Pt-based approaches may be improved in the future by the optimization of combinations with immunotherapy, management of side effects and use of nanodelivery devices. Hence, Pt drugs may still be part of the standard of care for several cancers in the coming years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call