Abstract

Satellites orbiting disk galaxies can induce phase space features such as spirality, vertical heating and phase-mixing in their disks. Such features have also been observed in our own Galaxy, but the complexity of the Milky Way disk has only recently been fully mapped by Gaia Data Release 2 (DR2) data. This complex behaviour is mainly ascribed to repeated perturbations induced by the Sagittarius dwarf galaxy (Sgr) along its orbit, pointing to this satellite as the main dynamical architect of the Milky Way disk. Here, we model Gaia DR2-observed colour–magnitude diagrams to obtain a detailed star formation history of the ~2 kpc bubble around the Sun. It reveals three conspicuous and narrow episodes of enhanced star formation that we can precisely date as having occurred 5.7, 1.9 and 1.0 Gyr ago. The timing of these episodes coincides with proposed Sgr pericentre passages according to (1) orbit simulations, (2) phase space features in the Galactic disk and (3) Sgr stellar content. These findings most probably suggest that Sgr has also been an important actor in the build-up of the stellar mass of the Milky Way disk, with the perturbations from Sgr repeatedly triggering major episodes of star formation. Galactic close encounters can induce gravitational effects in the participants. Here Ruiz-Lara et al. have reconstructed the star formation history of the region of our Galaxy close to the Sun, finding that three recent visits of the neighbouring Sagittarius dwarf galaxy have resulted in well-defined episodes of star formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call