Abstract
The rectilinear crossing number of a graph $G$ is the minimum number of edge crossings that can occur in any drawing of $G$ in which the edges are straight line segments and no three vertices are collinear. This number has been known for $G=K_n$ if $n \leq 9$. Using a combinatorial argument we show that for $n=10$ the number is 62.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.