Abstract

The recrystallization behavior of surface deformation layer of (TiB + TiC)/Ti–6Al–4V and Ti–6Al–4V were both investigated during isothermal annealing using X-ray diffraction line profile analysis. The surface deformation layer was introduced by shot peening treatment. The results revealed that with increasing the time of isothermal annealing, the microstructure variations at shot peened layer were obvious. Based on the results of line profile analysis, the recrystallization activation energies were calculated by computer regression analysis, and it showed that the recrystallization activation energy of (TiB + TiC)/Ti–6Al–4V was larger than that of Ti–6Al–4V, which was ascribed to the effect of reinforcements hindering the movements of dislocations, grain and subgrain boundaries in the process of recrystallization. The hindrance effect of reinforcements as sink sources of dislocations gliding resulted that the decrease rate of dislocation density of the composite was slower than that of the matrix. In addition, the relaxation activation energies were obtained according to the analysis of microstrain relaxation, and after isothermal annealing, the depth distribution of domain sizes from the top surface was investigated and discussed in detail. According to above analysis, the results showed that the thermostability of the composite was higher than that of the matrix because of the effect of reinforcements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.