Abstract
The Saccharomyces cerevisiae poly(A)-binding protein Pab1 is a modular protein composed of four RNA recognition motifs (RRM), a proline-rich domain (P) and a C-terminus. Thanks to this modularity, Pab1 is involved in different interactions that regulate many aspects of mRNA metabolism, including the assembly of stress granules. In this work, we analyzed the contribution of each domain for the recruitment of the protein within stress granules by comparing the intracellular distribution of synthetic Pab1-GFP variants, lacking one or more domains, with the localization of the endogenous mCherry-tagged Pab1. Glucose starvation and heat shock were used to trigger the formation of stress granules. We found that Pab1 association into these aggregates relies mainly on RRMs, whose number is important for an efficient recruitment of the protein. Interestingly, although the P and C domains do not directly participate in Pab1 association to stress granules, their presence strengthens or decreases, respectively, the distribution of synthetic Pab1 lacking at least one RRM into these aggregates. In addition to describing the contribution of domains in determining Pab1 association within stress granules, the outcomes of this study suggest the modularity of Pab1 as an attractive platform for synthetic biology approaches aimed at rewiring mRNA metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.