Abstract

In the huge number of online university education resources, it is difficult for learners to quickly locate the resources they need, which leads to “information trek.” Traditional information recommendation methods tend to ignore the characteristics of learners, who are the main subjects of education. In order to improve the recommendation accuracy, a recommendation algorithm based on improved collaborative filtering model is proposed in this paper. Firstly, according to the student behavior data, consider the behavior order to create the behavior graph and behavior route. Then, the path of text type is vectorized by the Keras Tokenizer method. Finally, the similarity between multidimensional behavior path vectors is calculated, and path collaborative filtering recommendations are performed for each dimension separately. The MOOC data of a university in China are introduced to experimentally compare the algorithm of the article as well as the control group algorithm. The results show that the proposed algorithm takes better values in evaluation indexes, thus verifying that this algorithm can improve the effectiveness of innovation and entrepreneurship education resources recommendation in universities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.