Abstract

Single-strand gaps (SSGs) and double-strand breaks (DSBs) are the major initiation sites for recombination. In bacteria, the SSGs are repaired by RecFOR, while the DSBs are processed by RecBCD in gram-negative bacteria and AddAB in gram-positive bacteria. Unexpectedly, instead of recBCD genes, the addAB genes were found in members of the alpha-proteobacteria group (gram negative). Taking Rhizobium etli as a model, the role of recF and addAB genes in homologous recombination and repair of damaged DNA was evaluated. Inactivation of either recF or addA provoked strong sensitivity to UV radiation and mitomycin C, while an additive effect was observed in the recF-addA mutant. The DSBs generated by nalidixic acid caused low viability only in the addA mutant. The recombination frequency of large and small plasmids was reduced in the recF mutant (24- and 36-fold, respectively), whereas a slight decrease (threefold) in the addA mutant was observed. Moreover, an additive effect (47- and 90-fold, respectively) was observed in the double mutant, but it was not as dramatic as that in a recA mutant. Interestingly, the frequency of deletion and Campbell-type recombination was slightly affected in either single or double mutants. These results suggest that another pathway exists that allows plasmid and Campbell-type recombination in the absence of recF and addA genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.