Abstract

The xynB of a hyperthermophilic Eubacterium, Thermotoga maritima MSB8, coding xylanase B (XynB) was previously expressed in E. coli and the recombinant protein was characterized using the synthetic substrates [J. Biosci. Bioeng. 92 (2001) 423]. In this study, the same xylanase B was purified to homogeneity with a recovery yield of about 43% using heat treatment followed by the Ni-NTA affinity chromatography. The specificity of XynB towards different natural substrates was evaluated. XynB was highly specific towards xylans tested but exhibited low activities towards lichenan (19%), gellan gum (7.3%), laminarin (3.4%) and carboxymethylcellulose (CMC, 1.4%). The apparent K m values of birchwood xylan and soluble oat-spelt xylan was 0.11 and 0.079 mg/ml, respectively. The XynB hydrolyzed xylooligosaccharides to yield predominantly xylobiose (X 2) and a small amount of xylose (X 1), suggesting that XynB was possibly an endo-acting xylanase. Analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylose as the main degradation products. HPLC results showed that hydrolyzed products of birchwood xylan by XynB yielded up to 66% of the total reaction product as xylobiose. These results clearly indicated that xylobiose could be mass-produced efficiently by the recombinant hyperthermostable XynB of T. maritima. Additionally, conversion of xylobiose (50 mM) to xylose was observed, while xylotriose (X 3) and xylotetraose (X 4) were detected in small amounts, indicating that the enzyme converted xylobiose to xylose based on the transglycosylation reaction. The increased binding ability of XynB to Avicel and/or insoluble xylan was also observed indicating the possibilities of roles of surface-aromatic amino acid residues for such action. However, further investigations are required to prove this speculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call