Abstract

In this paper, a two-stage HMM-based recognition method allows us to compensate for the possible loss in terms of recognition performance caused by the necessary trade-off between segmentation and recognition in an implicit segmentation-based strategy. The first stage consists of an implicit segmentation process that takes into account some contextual information to provide multiple segmentation-recognition hypotheses for a given preprocessed string. These hypotheses are verified and re-ranked in a second stage by using an isolated digit classifier. This method enables the use of two sets of features and numeral models: one taking into account both the segmentation and recognition aspects in an implicit segmentation-based strategy, and the other considering just the recognition aspects of isolated digits. These two stages have been shown to be complementary, in the sense that the verification stage compensates for the loss in terms of recognition performance brought about by the necessary tradeoff between segmentation and recognition carried out in the first stage. The experiments on 12,802 handwritten numeral strings of different lengths have shown that the use of a two-stage recognition strategy is a promising idea. The verification stage brought about an average improvement of 9.9% on the string recognition rates. On touching digit pairs, the method achieved a recognition rate of 89.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.