Abstract

Whether or not the completely destroyed ecosystem would follow a succession trajectory towards the surrounding forest ecosystem after restoration remains debatable. Here, a comprehensive dataset of thirty-five ecosystem functions were measured on five reclaimed opencast coal mine forest plots (two Robinia pseudoacacia - Pinus tabuliformis mixed forests with different technosol conditions: RPT and RPM; one R. pseudoacacia - Ulmus pumila - Ailanthus altissima mixed forest: RUA; one Picea meyeri - Picea wilsonii - Hippophae rhamnoides mixed forest: PPH; one R. pseudoacacia monoculture forest: RM) and one natural forest plot (Populus simonii monoculture forest: PM) in Pingshuo opencast coal mine, Shanxi Province, China. These functions were employed to examine the reclamation effects among plots in terms of four management scenarios (i.e., biomass productivity, carbon sequestration, general biodiversity conservation and nutrient accumulation) and to determine the affinities between reclaimed ecosystem and its native counterpart according to Bray Curtis Distance Algorithm. The results showed that after 20–23 years of succession, thirty-five ecosystem functions differed among plots and eight highest ecosystem functions were found in RPT and RPM (P < 0.05). In scenarios of biomass productivity, carbon sequestration, general biodiversity conservation and nutrient accumulation scenarios, RPM scored 0.645, 0.470, 0.467 and 0.578, respectively. Accordingly, RPT scored 0.458, 0.447, 0.405 and 0.515, respectively. Consequently, RPT and RPM had the highest scores in the four management objectives compared to other plots. With regard to the ecosystem affinities, RPT was analogous to RPM. Similarly, RUA and PPH resembled PM and RM, respectively. Overall, the pioneer tree species determined the reclamation quality in the dump in the long term, which could be referred as the “trigger effect” in the succession trajectory in reclaimed ecosystem, and the reclaimed coal mine ecosystem diverged from the surrounding ecosystem and reached a new self-sustaining state after 20–23 years of succession.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.