Abstract
Abstract The orientation dependence of deformation microstructure has been investigated in uniaxial deformed body-centered cubic molybdenum by electron backscatter diffraction and transmission electron microscopy. It has been found that the dislocation boundaries in both tensile and compressed molybdenum, similar to that in face-centered cubic metals, can be classified into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a {110} trace. Furthermore, it shows a reciprocal relationship between body-centered cubic metals and face-centered cubic metals on the orientation dependence of the deformation microstructure. Type 3 grains have stress axes direction which is near the [110] corner in the unit triangle for BCC metals, whereas Type 3 grains have stress axes direction which is near the [111] corner for FCC metals. The analysis of Schmid factors shows that the dislocation structure depends on the slip systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.