Abstract

Background and purposeRAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR. Materials and methodsProtein and RNA analyses, direct repeat green fluorescent protein (DR-GFP) assay and polysomal fractioning were used to measure HR efficiency and global translation in amuvatinib-treated H1299 lung carcinoma cells. Synergy of amuvatinib with IR or mitomycin c (MMC) was assessed by clonogenic survival assay. ResultsAmuvaninib inhibited RAD51 protein expression and HR. This was associated with reduced ribosomal protein S6 phosphorylation and inhibition of global translation. Amuvatinib sensitized cells to IR and MMC, agents that are selectively toxic to HR-deficient cells. ConclusionsAmuvatinib is a promising agent that may be used to decrease tumor cell resistance. Our work suggests that this is associated with decreased RAD51 expression and function and supports the further study of amuvatinib in combination with chemotherapy and radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.