Abstract

Proteins or lipids exposed to aldose sugars undergo initial and ultimately irreversible modification resulting in the formation of so-called advanced glycation end-products (AGEs). AGEs are postulated to be especially important in the setting of diabetes mellitus due to hyperglycaemia characteristic of this disorder. Our work has demonstrated that one of the principal means by which AGEs interact with the vascular wall is by interaction with their cellular receptor, the receptor for advanced glycation end-products (RAGE), which is present on the surface of endothelial cells, smooth muscle cells, mesangial cells, mononuclear phagocytes and certain neurons. AGEs interact with RAGE, resulting in the induction of monocyte chemotaxis as well as oxidant stress. One of the consequences of AGE-RAGE-induced cellular oxidant stress is the enhanced expression of vascular cell adhesion molecule-1 on the endothelial surface, a critical consequence of which is the attraction of mononuclear phagocytes into the vessel wall. In both cases, the pro-inflammatory effects of AGEs may be inhibited in the presence of RAGE blockade, using either anti-RAGE F(ab')2 or soluble RAGE, the extracellular domain of the molecule. These data suggest that inhibition of RAGE may interfere with monocyte chemotaxis and attraction into the vessel wall where AGEs deposit/form, suggesting the potential of this intervention to interfere with a critical step in the development of vascular disease, especially in patients with diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.