Abstract
Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as “danger signals” to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD4), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD4 promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a “sensor” that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.
Highlights
Extracellular adenine (ATP, ADP), uracil (UTP, UDP) and sugar nucleotides (e.g., UDP-glucose and UDP-galactose) are universal and phylogenetically ancient signaling molecules involved in many biological processes, from embryogenesis to adult homeostasis [1]
Based on previous data demonstrating that GPR17 is one of the 3 key genes expressed in human adult neuroprogenitor cells (NPCs) [12], we looked at the presence of GPR17+ cells in classical mouse brain neurogenic areas, i.e., the subventricular zone (SVZ) of lateral ventricles (LV) and the dentate gyrus (DG) of hippocampus
In summary, our study reveals the new cysLT/uracil nucleotide receptor GPR17 as a ‘‘sensor’’ that is activated upon brain injury in several embryonically distinct cell types that contribute to damage evolution and to the subsequent remodeling and repair
Summary
Extracellular adenine (ATP, ADP), uracil (UTP, UDP) and sugar nucleotides (e.g., UDP-glucose and UDP-galactose) are universal and phylogenetically ancient signaling molecules involved in many biological processes, from embryogenesis to adult homeostasis [1] Their actions on target cells are mediated by specific membrane receptors: the seven ligand-gated purinergic P2X channels and the eight G protein-coupled P2Y receptors Recent data highlight the existence of a functional crosstalk between the nucleotide and the cysLT systems in orchestrating inflammatory responses in various disease conditions, including ischemic stroke. Both types of mediators accumulate at the sites of inflammation, and inflammatory cells often co-express both P2Y and CysLT receptors [6]. At the site of brain injury, neurons and glia are exposed to high concentrations of both extracellular nucleotides and cysLTs, suggesting that these signaling molecules may act as ‘‘danger signals’’ to alert responses to tissue damage and start repair
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.