Abstract

With the rapid development of industrial intelligent manufacturing and electronic information technology, the importance of integrated circuits has grown fast. Photolithography, as the core technology of integrated circuit industry, has become a key research target for researchers all over the world. In this paper, we provide a brief introduction to photolithography as well as an outlook on the future development direction. Firstly, the key metric of lithography system, which is resolution, and how it relates to lithographic performance is analyzed. Secondly, some exposure methods developed on UV and DUV light sources are discussed, which are commonly used in the industry nowadays. Subsequently, this paper presents the structure and performance of some representative lithography equipment. Then, some summarizations are completed about the most recent advances in EUV lithography and high NA lithography. Finally, we examine the limitations of current lithography and forecast the future of lithography. The goal of this paper is to provide a guide on lithography equipment, particularly the most advanced products available nowadays. Additionally, some potential challenges that photolithography may face in its future development are highlighted, and some perspectives on how photolithography will evolve over the next decade are provided. These results shed light on guiding the future development direction of lithography machine as well as ways to push Moore’s law even further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.