Abstract
The E41K mutation in TPM2 gene encoding muscle regulatory protein beta-tropomyosin is associated with nemaline myopathy and cap disease. The mutation results in a reduced Ca2+-sensitivity of the thin filaments and in muscle weakness. To elucidate the structural basis of the reduced Ca2+-sensitivity of the thin filaments, we studied multistep changes in spatial arrangement of tropomyosin (Tpm), actin and myosin heads during the ATPase cycle in reconstituted fibers, using the polarized fluorescence microscopy. The E41K mutation inhibits troponin's ability to shift Tpm to the closed position at high Ca2+, thus restraining the transition of the thin filaments from the "off" to the "on" state. The mutation also inhibits the ability of S1 to shift Tpm to the open position, decreases the amount of the myosin heads bound strongly to actin at high Ca2+, but increases the number of such heads at low Ca2+. These changes may contribute to the low Ca2+-sensitivity and muscle weakness. As the mutation has no effect on troponin's ability to switch actin monomers on at high Ca2+ and inhibits their switching off at low Ca2+, the use of reagents that increase the Ca2+-sensitivity of the troponin complex may not be appropriate to restore muscle function in patients with this mutation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.