Abstract

Metal-organic frameworks (MOFs) have been widely investigated as functional materials with excellent properties. However, most MOFs are of poor electrical conductivity, which hinders their further application in electrochemical fields. Fortunately, the emergence of intrinsically conductive MOFs (c-MOFs) alleviates this problem. Layered double hydroxides (LDHs) possess Faraday redox reactivity, which is favorable to capacitors. In this paper, we combined c-MOFs with LDHs and prepared a series of NiCo-LDH@M-HHTP(-EtOH) (M=Ni or Co; HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) multilayer nanoarrays, and the effects of solvent on the morphology and energy storage properties of the materials were investigated. When NiCo-LDH@Co-HHTP-EtOH is applied as an electrode material in supercapacitors, it exhibits a capacitance of 830 F g-1 at 1 A g-1 . Furthermore, it exhibits high energy density and excellent rate performance when assembled in aqueous asymmetric supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.