Abstract
Vertical displacements are traditionally measured with precise levelling, which is inherently time consuming. Rapid or even real-time height determination can be achieved by the Global Navigation Satellite System (GNSS). Nevertheless, the accuracy of real-time GNSS positioning is limited, and the deployment of a network of continuously operating GNSS receivers is not cost effective unless low-cost GNSS receivers are considered. In this study, we examined the use of geodetic-grade and low-cost GNSS receivers for static and real-time GNSS levelling, respectively. The results of static GNSS levelling were processed in four different software programs or services. The largest differences for ellipsoidal/normal heights reached 0.054 m/0.055 m, 0.046 m/0.047 m, and 0.058 m/0.058 m for points WRO1, BM_ROOF, and BM_CP, respectively. In addition, the values depended on the software used and the location of the point. However, the multistage experiment was designed to analyze various strategies for GNSS data processing and to define a method for detecting vertical displacement in a time series of receiver coordinates. The developed method combined time differentiation of coordinates estimated for a single GNSS receiver using the Precise Point Positioning (PPP) technique and Butterworth filtering. It demonstrated the capability of real-time detection of six out of eight displacements in the range between 20 and 55 mm at the three-sigma level. The study showed the potential of low-cost GNSS receivers for real-time displacement detection, thereby suggesting their applicability to structural health monitoring, positioning, or early warning systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.