Abstract
Density functional theory (DFT) and Monte Carlo (MC) techniques were used to investigate the adsorption behaviour of sulphur-containing molecules namely dibenzyl disulphide (DBDS) and copper sulphide (Cu2S) on different copper (Cu) surfaces. These sulphides are involved in the corrosion of copper windings in power transformers. The structural and quantum chemical parameters such as the molecular orbital energies, energy gaps and chemical hardness of these sulphides were investigated along with its electronic and energetic properties. To allow successful adsorption, the initial lattice parameters were determined prior to geometry optimization of all molecules and surfaces. The lowest adsorption energy configurations with its corresponding adsorption and deformation energies were determined. The density of adsorption sites were also determined. An adsorption energy comparison was done between the DBDS and Cu2S to determine the most reactive species on the different Cu surfaces. The reactivity of the two sulphides were investigated to provide a better understanding of the corrosion mechanism in transformers. The average bond distance between the sulphur (S) atom and the nearest Cu surface atom for the lowest energy configurations for both DBDS and Cu2S were compared in order to understand the behaviour of the sulphides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.