Abstract

The analyses of X-ray emission from classical novae during the outburst stage have shown that the soft X-ray emission below 1 keV, which is thought to originate from the photosphere of the white dwarf, is inconsistent with the simple blackbody model of emission. Thus, $ROSAT$ Position Sensitive Proportional Counter (PSPC) archival data of the classical novae GQ Mus 1983 (GQ Mus) have been reanalyzed in order to understand the spectral development in the X-ray wavelengths during the outburst stage. The X-ray spectra are fitted with the hot white dwarf atmosphere emission models developed for the remnants of classical novae near the Eddington luminosity. The post-outburst X-ray spectra of the remnant white dwarf is examined in the context of evolution on the Hertzsprung-Russell diagram using C-O enhanced atmosphere models. The data obtained in 1991 August (during the ROSAT All Sky Survey) indicate that the effective temperature is kT_e<54 eV (<6.2x10^5 K). The 1992 February data show that the white dwarf had reached an effective temperature in the range 38.3-43.3 eV (4.4-5.1x10^5 K) with an unabsorbed X-ray flux (i.e., $\sim$ bolometric flux) between 2.5x10^-9 and 2.3x10^-10 erg s^-1 cm^-2. We show that the H burning at the surface of the WD had most likely ceased at the time of the X-ray observations. Only the 1991 August data show evidence for ongoing H burning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call